Module Il

Syllabus

MODULE 2

e Basic structure of C program:
o Character set, Tokens, Identifiers in C, Variables and Data Types, Constants, Console 10
Operations, printfand scanf

e Operators and Expressions:
o Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator,

size of operator, Assignment operators and Bitwise Operators. Operators Precedence

e Control Flow Statements:
o If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do
‘While Loop, For Loop, Break and Continue statements.(Simple programs covering control flow)

e History of C Programming Language
o C programming language was developed in 1972 by Demnis Ritchie at AT&T Bell laboratories,
US.A

o C is structured, high level, machine independent language

e Character set
o C language supports a total of 256 characters.
o The characters in C are grouped into the following

Tokens

Letters: a-z, A-Z
Digits: 0-9
Special characters: Some special symbols are

Programming in C— EST 102

o Keywords

. 5 . : ? ¢ & | / \ ~ _ 18 | &
#lw|* | -J+l<[>]C[)lTlT11¢{]}
White spaces
e Blank space, Horizontal tab, Camriage return, Newline, Form feed
o Every smallest individual unit of a C program is called token.
o Every instruction in a C program is a collection of tokens.
o C has six types of tokens
Keyword
Identifiers
Constants
Strings
Special Symbols
Operators
These are specific reserved words in C.
All keywords have fixed meanings and that cannot be changed.
These meanings have already been explained to the C compiler.
It is the basic building blocks for program statements.
Keywords are always in lowercase
There are total of 32 keywords in C
auto break case char const continue | default do
double else enum extern float for goto if
int long register | return short signed sizeof static
struct switch typedef | union unsigned | void volatile | while

VICET

Module Il Programming in C—EST 102

o Identifiers
= These are user-defined names

= Underscore character, uppercase letters and lowercase letters are permitted.

= Identifiers refer to the names of variables, functions, arrays, pointers, structures etc.
= Rules for Identifiers

Identifiers consist of only alphabet, digits or underscore.

First character must be an alphabet or an underscore.

Only first 31 characters are significant

Keywords should not be used as identifiers

Must not contain white space

LIrS T O]

2R

= Examples:
Valid Identifiers: markl, C mark. markl
Invalid Identifiers: Imark, mark$, #mark

o Constants
= These are fixed values that do not change during program execution.
= Different types of constants are

e Integer Constants
¢ Real(floating point) Constants

¢ Single Character Constants
¢ String Constants
¢ Backslash Character Constants(Escape Sequences)

e« Integer Constants
o Itisa sequence of digits.

o There are three types of integers
= Decimal integer
e Itis aset of digits, 0 through 9, preceded by an optional — or + sign.
e Examples: 57 -125 +187
= QOctal integer
e Any combination of digits from the set 0 through 7 with a leading 0.
e Examples: 025 0124
= Hexadecimal integer
e A sequence of digits preceded by 0x or 0X is considered as hexadecimal
integer.
e They may also include alphabets A through F (or a through f). The
letters A through F represent the numbers 10 through 15.
e Examples: 0X5 O0x3E (0Xabc
¢ Real(floating point) Constants
o These constants have a whole number part followed by a fractional part
o These may be written in one of the two forms
= Fractional form
e At least one digit before and after the decimal point.
e The number may be either positive or negative
e Example: 0.0045 -0.23 25437 +125.0

2 VICET

Module Il Programming in C—EST 102

= Exponent form
e It consists of 2 parts. Mantissa and Exponent
e The exponent is an integer number with optional + or - sign
e Example:
o 215.65 can be written as 2.1565E2. Here E2 means multiply by 10”.
o Here Mantissa=2.1565 and Exponent=2

e Single Character Constants
o A Single Character constant represent a single character which is enclosed in a
pair of single quote marks.
o Examples:'3' 'O

« String Constants
o Tt is a set of characters surrounded by double quotes.
o The characters in a string constant sequence may be an alphabet, number, special
characters and blank space.
Examples: "HELLO” "321" "7ab!"
o Each string will be ends with special character "0’

e Backslash Character Constants(Escape Sequences)
o Backslash character constants are special characters used in output functions.
o It is the combination of 2 characters.

Constant Meaning Constant Meaning
\a Bell v Vertical tab
\b Backspace \V Single quote
\f Form feed v Double quote
‘n New line \? Question mark
\r Carriage return \ Back slash
At Horizontal tab \0 Null

o Strings
= Itis a set of characters surrounded by double quotes.
= The characters in a string constant sequence may be an alphabet, number, special characters
and blank space.
= Examples: "HELL.O” "321" "2abl"
» Each string will be ends with special character *\0".

o Special Symbols
= Some special symbols are

Symbol Name
[] Bracket

() Parentheses
{} Braces

: Comimna

2 Semicolon
* Asterisk

Hash

= Equal to

3 VICET

Module Il

o Operators
Operators are divided into
Arithmetic operators

Assigmment operators

Increment and Decrement operators

Relational operators

Logical operators
Bitwise operators

Shift operators

Conditional operator
Special operators

Arithmetic operators

Operator Meaning

+ Addition/Unary plus

- Subtraction/Unary minus
* Multiplication

/ Division

% Modulo division

Binary operators require two operands to operate up on.
Unary operators require only one operand.
//here + is a binary operator with 2 operands
//here - is a unary operator with 1 operand

o Examples:

c=a+b;
c=-a.

Arithmetic operations are of 3 type
o Integer Arithmetic: Both operands are integers. The result is also integer.
o Real Arithmetic: Both operands are real numbers. The result is also real.
o Mixed mode Arithmetic: Here one operand is integer and the other one is real.
The result is always a real number.

o Examples:

20/10=2
25.0/10.0=2.5
25/10.0=2.5

Integer division truncates fractional part
Modulo division(%) produces the remainder of an integer division
The sign of modulo division result is the sign of first operand.
% cannot be used on floating point numbers

o Examples:

int a=7.b=3.c.d.e;

Programming in C— EST 102

//integer arithmetic
//real arithmetic
//mixed mode arithmetic

c=a/b:; //mow c is 2

d=a%b:; /mowdis 1

e=-a%b; /lnow e is -1

Assignment operators
Operator Meaning Operator Meaning
= Assignment e Assign product
+= Assign sum /= Assign quotient
= Assign difference %= Assign Modulo
at=b means a=atb
4

VICET

Module Il

Programming in C— EST 102

Increment and Decrement operators

Operator Meaning

++ Increment operator. Add one to the operand

-- Decrement operator. Subtract one from the operand
¢ Both are unary operators

e +taand a++ will increment the value of a by one.

e Examples: a=10;
b=++a; //now a=b=11. First increment a by 1 and then assign it to b.
c=a-t+; /lmow c=11 and a=12. First assignment, then increment

Relational operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal
>= Greater than or equal
= Equal to

I= Not equal to

e The result of relational expression is either true or false
e When arithmetic expressions are used on either side of a relational operator, arithmetic
expressions will be executed first and then result is compared.
e« Example: if(age>=40){ }
If the age is 40 and above, then this relation will return true. Otherwise it is false.

Logical operators
Operator Meaning
&& Logical AND
| Logical OR
! Logical NOT

e These are used when we want to test more than one condition and make decisions.

e Examplel: if(age>=40 && salary>50000) { }
There are 2 conditions. If both are satisfied, then the condition i1s true and execute
corresponding block of codes.

e Example2: if(age>=40 | salary>50000) { }
There are 2 conditions. If anyone satisfies, then the condition is true and execute
corresponding block of codes.

e Example3: if(!(age>=40)) { }
First take the relation and find the complement. Here the condition is true if age is less
than 40.

Bitwise operators

Operator

Meaning

&

Bitwise AND

Bitwise OR

A

Bitwise XOR

e These manipulate the data at bit level
e These operators cannot be applied on float or double numbers.

VICET

Module Il Programming in C—EST 102

¢ Examplel: 9&5
o First take the binary form of 9 and 5.
o Then perform bitwise AND operation
1001 &
0101
0001 = The answer is 1
e Example2: 9|5
o First take the binary form of 9 and 5.
o Then perform bitwise OR operation
1001 |
0101
1101 = Theansweris 13
¢ Example3: 975
o First take the binary form of 9 and 5.
o Then perform bitwise XOR operation

1001 ~
0101
1100 =>» The answer is 12
= Shift operators
Operator Meaning
<< Left shift
>> Right shift

¢ These manipulate the data at bit level
e These operators cannot be applied on float or double numbers.
¢ The left-shift and right-shift operators are equivalent to multiplication and division by 2
respectively
e Examplel: 12<<2
o Write the binary form of the digit in 16 bits.
[0 0]ofofofo]o[o]o]o]o[o[1][1]0]0]
o Then shift two position to the left
[0 0]olofolofo o [o]o[i[1[0[0]0]0]
o Now the number becomes 48
e Example2: 12>>1
o Write the binary form of the digit in 16 bits.
[0[ofofofofofofojojoJofof1][1][0]0]
o Then shift one position to the right
[0[0]olofolofo[o]o]o]alo[o[1][1]0]
o Now the number becomes 6
e The left shift and right shift operators should not be used for negative numbers
= Conditional operator
e 7:istheconditional operator.
e Syntax: expressionl ? expression 2 : expression 3 ;
expressionl, expression2 and expression3 are the three expressions.
If expressionl is true, then expression2 is evaluated. Otherwise expression3 is
evaluated.
¢ Example: a=10, b=20:
x=(a>b)?(2*a) : (2*b):
Here expressionl is (a>b), expression2 is (2*a) and expression3 is (2*b).
Here expressionl is false. So expression3 is evaluated and x becomes 40

6 VICET

Module Il

Special operators

Programming in C— EST 102

Operator Meaning Operator Meaning
. Direct component selector sizeof sizeof operator

> Indirect component selector ¥ Pointer operator

3 Comma operator & Pointer operator

¢ (Comma operator can be used to link
related expressions together. It evaluates the expressions from left to right and the
value of the rightmost expression is the value ofthe combined expression.

o Example:

value=(a=10, b=20, a+b);

First assigns 10 to a, then assigns 20 to b and finally assigns 10+20=30 to value.
e sizeof operator retumns the number of bytes the operand occupies.

o Example:

o Operator precedence

m=sizeof{sum);

Itis the priority in which the operations in an arithmetic statement are performed.

Operator Description Associativity Rank

@) Function call Left to right 1
[1] Array element reference Left to right 1
+ Unary plus Right to left 2
- Unary minus Right to left 2
++ Increment Right to left 2
-- Decrement Right to left 2
! Logical negation Right fo left 2
= Ones complement Right to left 2
* Pointer reference Right to left 2
& Address Right to left 2
sizeof Size of an object Right to left 2
(type) Type casting Right to left 2
* Multiplication Left to right 3
/ Division Left to right 3
% Modulus Left to right 3
+ Addition Left toright 4
- Subtraction Left to right 4
<< Left shift Left to right 5
>> Right shift Left to right 5
< Less than Left to right 6
<= Less than or equal to Left to right 6
> Greater than Left to right 6
>= Greater than or equal to Left to right 6
= Equality Left to right 7
1= Inequality Left to right 7
& Bitwise AND Left to right 8
A Bitwise XOR Left to right 9
| Bitwise OR Left to right 10
&& Logical AND Left to right 11
I Logical OR Left to right 12
2 Conditional expression Right to left 13
iS55 0 Assignment operators Right to left 14
&= ==, <<=>>= -

Comma operator Left to right 15

// m will be the size of the variable sum

VICET

Module Il Programming in C—EST 102

e Arithmetic Expressions
o It is a combination of variables, constants and operators arranged as per the syntax of the

language.
o An expression is evaluated using an assignment statement.
o Example: x=atb/c; //Here a+b/c is an expression

o Rules for Evaluation of Expression
= First, parenthesized sub expression from left to right is evaluated.
= Ifparentheses are nested. the evaluation begins with the innermost sub-expressions
= The precedence rule is applied in determining the order of application of operators in
evaluating sub expressions.
= The associativity rule is applied when two or more operators of the same precedence level
appear in a sub expression
= Arithmetic expressions are evaluated from left to right using the rule of precedence
= When parentheses are used, the expressions within parentheses assume highest priority
o Example: x=10-(14/(4+3)+3)+(2+4)

10-(14/(4+3)+3)+(2+4)

e Data Types
o Data types are used to specify what kind of value can be stored in a variable.

o The memory size and type of the value of a variable are determined by the variable data type.

o Data types are classified as follows
» Primary data types (Basic/Fundamental/Predefined data types)

» Derived data types (Secondary data types)
= User defined data types (Enumerated data types)
o Primary data types (Basic/Fundamental/Predefined data types)
= Character
e Signed Character/Character
¢ Unsigned Character
= Integer
e Signed Integer/Integer
e Unsigned Integer
¢ Signed Short Integer/Short Integer
e Unsigned Short Integer
¢ Signed Long Integer/ Long Integer
¢ Unsigned Long Integer
e Signed Long Long Integer/ Long Long Integer
e Unsigned Long Long Integer
= Floating point
¢ Floating point
¢ Double precision floating point
¢ Extended Double precision floating point
= Void

&8 VICET

Module Il

Programming in C— EST 102

; ; , Format
Data type Keyword Memory size Range of values spoeilie
Character/ char/
17 %
Signed Character signed char 1 Byte 128 to +127 Vo
Unsigned Character unsigned char 1 Byte 0 to 255 %c
Integer/ int/ .
= g 9 0
Signed Integer signed int 2 Bytes 32768 to +32767 od, %1
Unsigned Integer unsigned int 2 Bytes 0 to 65535 %u
Short Integer/ short int/ .
-) 0 0
Signed Short Integer signed short int 1 Byte 128 to +127 vahd, ohi
Unsigned Short Integer unsigned short int 1 Byte 0 to 255 %hu
Long Integer/ long int/ 3 1 .
T <2 L, 0 0
Signed Long Integer signed long int 4 Bytes 27 o +27 %ld, %li
Unsigned Long Integer unsigned long int 4 Bytes gt 1 %lu
Long Long Integer/ long long int/
Signed Long Long . g long . 8 Bytes 2% to +2%-1 %l1d, %lli
signed long long int
Integer
Unsigned Long Long . : 04 0
Integer unsigned long long int 8 Bytes 0 to27-1 Yollu
Floating point float 4 Bytes 3.4e-38 to 3.4e+38 %f, %oe
D;“bl?pre“.sm double 8 Bytes 17308 to 1.7e+308 %If
oating point
Estenden Double long double 10 Bytes | 3.4e-4932 to 1.1e-4932 | %Lf
precision floating point
Void void

*Size of each data types vary based on machines

= Precedence rules decides the order in which different operators are applied
= Associativity rule decides the order in which multiple occurrences of the same level

operator are applied.
» Floating point numbers are stored in 32 bits with 6 digits of precision
= When the accuracy provided by the float number is not sufficient, the type double can be

used. It provides 14 digits of precision.

= void data type:
e The void data type means nothing or no value.

e It is used to specify a function which does not return any value

o Derived data types (Secondary data types)

= Derived data types are constructed from primary data types. They are

e Arrays: It is the collection of similar data referenced by a common name.

e Functions
¢ Pointers: It is a variable that holds the memory address. This address is the location of

another variable in memory.
e Structure: It is a collection of variables of different data types referenced under one

name
e Union

o Structure and union are same but different in memory allocation

VICET

Module Il Programming in C—EST 102

o Defining a union is similar to defining a structure
o A union is a memory location that is shared by two or more different variables,
generally of different types at different times

o User defined data types (Enumerated data types)
= typedef: It allows users to define an identifier that would represent an existing data type

e Syntax: typedef data type identifier;
e« Example: typedef int mark;
int mark1,mark2; - > mark markl,mark2;
| Can be written as

= Enumeration:
e It can be used to declare variables that can have one of the values enclosed within the
braces.
o Syntax: enum identifier{valuel. value2. valuen}
e After this definition, we can declare variables to be of this new type
o Syntax: enum identifier v1,v2,. ... vn;
o v1,v2,...vn can only have one of the values valuel, valu2, valuen

e Variables
o Variables are identifiers that used to store data values.
o Variables may take different values at different times during the execution of a program
o Examples:
= Valid variables:- abc max avg mark
= Invalid variables:- $abc 123 lab

o Variable Declaration of Primary data type
= Syntax:
data type vi.va,...Vg;
data_type is any primary data type
V1.Va,...Vy are the names of variables
= Declaration must ends with ;
= Example:
int sum;
float markl, mark2;

o Variable Initialization
= The process of giving initial values to variables is called initialization.
= Syntax: data type var name=value;
= Example: intx=10;
o There are two values associated with each variable.
= Data value(r- value): Data stored in that variable.
= Tocation value(l-value): This is the address in memory at which its data value is stored.

10 VICET

Module Il

Programming in C— EST 102

e Type conversion in expressions
o Implicit Type Conversion
= C automatically converts some values to some other types. This is known as implicit type
conversion.
= Rules:

All short and char are automatically converted fo int.
If one of the operand is long double, then the other will be converted to long double
and the result will be long double.
Else If one of the operand is double, then the other will be converted to double and the
result will be double.
Else If one of the operand is float, then the other will be converted to float and the
result will be float.
Else If one of the operand is unsigned long int, then the other will be converted to
unsigned long int and the result will be unsigned long int.
Else if one of the operands is long int and the other is unsigned int, then
o If unsigned int can be converted to long int, the unsigned long int operand will be
converted as such and the result will long int
o Else both operands will be converted to unsigned long int and the result will be
unsigned long int
Else If one of the operand is long int, then the other will be converted to long int and
the result will be long int.
Else If one of the operand is unsigned int, then the other will be converted to unsigned
int and the result will be unsigned int.
long double

double
float
unsigned long long
long long
unsigned long
long

unsigned int

T

int

short char

» Final result of an expression is converted to the type of the variable in LHS.

Float to int causes truncation of the fractional part
Double to float causes rounding of digits
Long int to int causes dropping of the excess higher order bits.

o Explicit Type Conversion
= Syntax: (data_type) expression;
= Example: x= (int) (at+b/c);

x= (int)10.5/(int)2.0; //perform 10/2 and the result would be 5

11 VICET

C language provides getchar(), getch() and getche() for reading single character and putchar(),
putch() for displaying single character on screen.

getchar() and putchar() Functions:header file (stdio.n>

1. getchar():

It reads a single character from input device This function is defined in <stdio.h> header file.
Syntax: var_name=getchar();

Where var_name is of type char.

getchar() requires Enter key to be pressed following the character that you typed. It echoes typed
character

2. putchar():

It displays or writes a single character to the standard output device
Syntax:putchar(var_name);

Where var_name is of type char.

#include<stdio.h>
int main()

{

char x;
x=getchar();
putchar(x);

return O;

}

K

K

getch(), getche() and putch() Functions:header file <conio.h>
1. getch():

This function is used to read a character from the console but does not echo to the screen. This
function is included in header file <conio.h>

Syntax: var_name=getch();
where var_name is of type char.

getch() function is a non-buffered function. It does not use any buffer, so the entered character is
immediately returned without waiting for the enter key.

The character data read by this function is directly assigned to a variable rather it goes to the
memory buffer.

Another use of this function is to maintain the output on the screen until you have not to press
the Enter key. getch() works only on dos like TC compiler. It does not work on a Linux platform.

2. getche():

getche() function is used to read a character from the console and echoes that character to the
screen. This function is included in header file <conio.h>.

Syntax: var_name=getche();

It does not use any buffer, so the entered character is immediately returned without waiting for
the enter key. getche() works only on

DOS-like TC compiler. It does not work on a Linux platform.

The main difference between getch() and getche() is getch() does not echo character after
reading, while getche() echoes character after reading.

3. putch():

putch() function displays or writes single character to the standard output device(i.e. stdout). This
function is defined in <conio.h> header file.

Syntax: putch(var_name);

Where, var_name is of type char.

putch() does not translate linefeed characters (\n) into carriage-return/linefeed pairs. The putch()
function returns the character written or EOF if an error occurs.

/[Learnprogramo
#include<stdio.h>
#include<conio.h>
int main()

{

char x;

x=getch();
putch(x);

return O;

}

K
#include<stdio.h>
#include<conio.h>
int main()

{

char x;
x=getche();
putch(x);

return O;

¥
KK

Module Il Programming in C—EST 102

e Console IO Operations
o The printf() and scanf{() functions are inbuilt library functions, defined in stdio.h header file.

o printf()
» The printf() is used for output.
= It prints the given statement to the console/monitor.
= Syntax: printf{“‘format string” arguments);
o scanf()
= The scanf() is used for input.
= Itreads the input data from the console/keyboard
» Syntax: scanf("format string",arguments);

o The format string can be %d (integer). %c (character)., %s (string). %f (float) etc.
o stdio.h is a header file, for standard input output functions. It activate keyboard and monitor.

e Structure of a C Program

C Program Sections Description

Comments Documentation Section
#include files Linkage Section. #include is a pre-processor directive
#define Definition Section
Declaration of Variables and Functions Global declaration section
main()
{

Declaration part Main function section

Executable part
-
Function 1
Function 2

Function definition section

Function n

o Every statement in C should end with a semicolon.
o Comunents:
* Single line comment is represented using //
= Multiple line comments are embedded between /* and */
o Comiment lines are not executable statements and therefore anything between/* and */ is ignored
by the compiler.
Program execution begins from main()
Every program must have exactly one main function.
main() has no parameters

e Control Flow Statements
o They are divided into
= Decision making and branching:
e If statement
e Switch statements
» Looping: Looping is deciding how many times to take a certain action
e for loop
¢ while loop
e do-while loop

12 VICET

Module Il Programming in C—EST 102

= Jump Statement
* goto statement
= Break and Continue Statements

o if Statement
= Simple if
e Syntax: if(condition)

block of statements;

}

statement-x;
e If the condition is true. then block of statements gets executed. Otherwise these
statements are skipped. In both cases control is transferred to the statement-x.

= jfelse
e Syntax: if(condition)

block of statements-1;

}

else

{
}

statement-x;
e If the condition is true. then block of statements-1 gets executed. Otherwise block of
statements-2 gets executed. In both cases control is transferred to the statement-x.

block of statements-2;

= else-if ladder

e Syntax: if(condition-1)
{ block of statements-1;
}
else if{condition-2)
{ block of statements-2;
}
else if{condition-3)
{ block of statements-3;
}
else
{ block of statemenis-4;
}

statement-x;

e If the condition-1 is true, then Block of statements-1 gets executed. Otherwise check
condition-2. If it is true then Block of statements-2 gets executed. Otherwise check
condition-3. If it is true then Block of statements-3 gets executed. Otherwise Block of
statements-4 gets executed.

¢ Any one block of statements gets executed and finally control will transfer to
statement-x.

¢ Anynumber of else-if blocks is possible. Else block is optional.

13 VICET

Module Il Programming in C—EST 102

= Nested if
¢ Synfax: if(condition-1)
{
if(condition-2) //Nested if
block of statements-1;
}
}

e One if statement inside another if is called nested if.

o Switch
= The switch statement is much like a else-if ladder statement.
= Switch statement can be slightly more efficient and easier to read
= Syntax: switch(expression)

{
case valuel: blockl:
break:;
casevalue2: block2;
break;
case value3: block3;
break;
default : default block;
}

e First, the expression is evaluated. It checks for matching case statements. When a
match is found, the corresponding blocks gets executed. If no match is found, default
block gets executed.

e break statement causes an exit from the switch statement.

e It is possible to nest the switch statement.

e The case can be arranged in any order.

o goto statement(Unconditional Jump)
= The goto statement allows us to transfer contiol of the program to the specified
label.
= Syntax: goto label;

label: statement;

= Example: Write a C program to find the given number is odd or even using goto statement
#include<stdio.h>
void main()
{ -
1nt num;
printf("Enter the number: ");
scanf("%d",&num);

14 VICET

Module Il Programming in C—EST 102

if(num%2=—0)
{ printf("%ad is an even number",num);
goto END;

printf("%d is an odd number",num);
END: printf("\nProgram terminated!!!!");

]
s

QOutput

Enter the number; 13
13 is an odd number
Program terminated!!!!

o break statement
= A break statement may appear inside a loop or a switch statement
= A break statement inside a loop/switch will abort the loop/switch and transfer control to the
statement following the loop/switch.
= Example: Write a C program to read a natural number and check whether the number is
prime or not
void main()
{ int num,i,count=0,flag=0;
printf("Enter the number: ");
scanf{"%d",&num);
for(i=2;i<=num/2:i++)

{ if{ num%i=—0)
{ flag=1;
break;
}
}
if(flag==0)
printf("%d is a prime number",num);
else
printf("%4d is not a prime number",num);
}
Output

Enter the number: 13
13 is a prime number

o continue statement
= When continue is encountered inside any loop, control automatically passes to the
beginning of the loop.
= Syntax: continue;
» Example: void main()

{ int i;
for(i=1;i<=4:i++)
{ if(i==2)
Continue;
printf(“%d », i);
y
}
Output
I i3 .4

15 VICET

Module Il Programming in C—EST 102

o for loop
= Syntax: for(expressionl; expression2; expression3)
{
Block of statements;
}

= expressionl - Initializes variables

= expression2 - Conditional expression, as long as this condition is true, loop will keep
executing.

= expression3 - expression3 is the modifier which may be simple increment/decrement of a
variable.

= Initially evaluate expressionl then evaluate expression2. If expression2 is true, then Block
of statements gets executed. During the beginning of next iteration, evaluate expression3,
then check expression2. If it 1s still true the statements get executed again. This cycle
repeats until expression2 evaluates to false.

* During first iteration, expressionl and expression2 are executed.

* During the subsequent iterations expression3 and expression2 are executed.

o while loop
= Syntax: while (condition)
{
Block of statements;
}

= If the test condition is true, then the Block of statements get executed. After the
statements have been executed, the test condition is checked agam. If it is still true
the statements get executed again. This cycle repeats until the test condition
evaluates to false.

o Deo-while loop
= Syntax: do

Block of statements;
} while (condition);
= The Block of statements of do-while loop 1s executed at least once. Only then, the
condition is evaluated. If it is true, then the statements get executed again. This

cycle repeats until the test condition evaluates to false.

16 VICET

Module Il

1.

Example Programs

Write a C program to display “Hello World”
Program
#include<stdio.h>
void main()
{
printf("Hello World");
}

Output
Hello World

Write a C program to read two numbers. add them and display their sum
Program
#include<stdio.h>
void main()
{
int a,b,sum;
printf("Enter two numbers: ");
scanf("%d%d" &a.&Db);
sum=a+b;
printf("%d + %d = %d",a,b,sum);
}

Output
Enter two numbers: 10 20

10+20=30

Write a C program to read the radius of a circle, calculate its area and display it
Program
#include<stdio.h>
void main()
{
float radius,area;
printf("Enter the radius of the circle: "),
scanf("%{",&radius);
area=3.14 *radius * radius;
printf("Area of the circle = %", area);
}

Output
Enter the radius of the circle: 10

Area of the circle = 314.000000

17

Programming in C— EST 102

VICET

Module Il Programming in C—EST 102

4. Write a C program to Evaluate the arithmetic expression ((a -b/ ¢ * d + e) * (f +g)) and display its

solution.

Program

/((a-b/c*d+e)*(f+g))

/((20-10/ 2 *3 +4) * (1 +2))

#include<stdio.h>

void main()

{
int a,b.c.d.e.f,gresult;
printf("Enter ab c d e f g values: ");
scanf{"%d%d%d%d%d%d%d", &a, &b, &c,&d. &e, &f.&g);
result=((a-b/c*d+e) * (f+g)):
printf("((%d - %d / %d * %d + %d) * (%d + %d)) = %d",a,b,c.d,e.f g result);

}

Output
Enterabcdefgvalues:20 10 2 3 4 1 2

((20 - 10/ 2 * 3 +4) * (1 +2)) =27

5. Write a C program to swap two numbers using temporary variable
Program
//swap two numbers using temporary variable
#include<stdio.h>
void main()

{
int a,b.temp;
printf("Enter two numbers: ");
scanf("%d%d" . &a,&b);
printf("Before swapping a=%d b=%d".a,b);
temp=b;
b=a;
a=temp;
printf("\nAfter swapping a=%d b=%d".a,b);
}

Output
Enter two numbers; 10 20

Before swapping a=10 b=20
After swapping a=20 b=10

6. Write a C program to swap two numbers without using temporary variable
Program
//swap two numbers without using temporary variable

#include<stdio.h>
void main()

{
int a,b;
printf("Enter two numbers: ");
scanf{"%d%d" &a,&b);
printf("Before swapping a=%d b=%d",a,b);

18 VICET

Module Il Programming in C—EST 102

a=a+tb;

b=a-b;

a=a-b;

printf("\nAfter swapping a=%d b=%d".a.b):
}
Output

Enter two numbers: 10 20
Before swapping a=10 b=20
After swapping a=20 b=10

7. Write a C program to read 2 integer values and find the largest among them.
Program
//find the largest of two numbers
#include<stdio h>
void main()
{
intnl,n2;
printf("Enter two number: ");
scanf{"%d%d" &nl.&n2);
if(n1>n2)
printf("largest number=%d".nl);
else
printf("largest number=%d" ,n2);
}
Output
Enter two number: 20 10
largest number=20

8. Write a C program to find the largest among two numbers using conditional operator.
Program
/flargest among two numbers using conditional operator
#include<stdio.h>
void main()
{
intnl.n2 largest;
printf("Enter two numbers: ");
scanf{"%d%d",&nl,&n2);
largest=(n1>n2)7nl:n2;
printf("Largest among %od and %d is %d",nl,n2 largest);
}

Output
Enter two numbers: 10 20

Largest among 10 and 20 is 20

19 VICET

Module Il Programming in C—EST 102

9. Write a C program to read 3 integer values and find the largest among them.

Program

//Largest among 3 numbers

#include<stdio.h>

void main()

{
int numl ,num2 num3,largest;
printf("Enter three numbers: ");
scanf{"%d%d%d",&numl,&num2.&num3);

if(numl>num2)
{
if(numl >num3)
largest=numl;
else
largest=num3;
¥
else /mum2>=numl
{
if(num2>numa3)
largest=num?2;
else
largest=num3;
}
printf("The largest number is %d",largest);
3
Output
Enter three numbers: 2 1 3

The largest number is 3

10. Write a C program to read 3 integer values and find the largest among them using conditional

operator.

Program

//Targest among three numbers using conditional operator

#include<stdio.h>

void main()

{
int nl.n2.n3.largest:
printf("Enter three numbers: ");
scanf{"%d%d%d",&nl,&n2,&n3);
largest=(n1>n2)?((n1>n3)?n1:n3):((n2>n3)?n2:n3);
printf("Largest=%d",largest);

}

Output
Enter three numbers: 20 10 30
Largest=30

20 VICET

	getchar() and putchar() Functions:header file (stdio.h>
	1. getchar():
	2. putchar():

	getch(), getche() and putch() Functions:header file <conio.h>
	1. getch():
	2. getche():
	3. putch():

